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Efforts to measure quality using patient
outcomes—whether hospital mortality
rates or major complication rates for indi-
vidual surgery—often become mired in
debates over the adequacy of adjustment
for case-mix. Some hospitals take care of
sicker patients than other hospitals. Some
surgeons operate on patients whom other
surgeons feel exceed their skill levels. We
do not want to penalise hospitals or
doctors who accept referrals for more
complex patients. Yet, we also do not
want to miss opportunities for improve-
ment. Maybe a particular hospital that
cares for sicker patients achieves worse
outcomes than other hospitals with
similar patient populations.
This debate over the adequacy of

case-mix adjustment dates back to
Florence Nightingale’s publication of
league tables for mortality in 19th
century English hospitals.1 We have made
some progress. Some successes have
involved supplementing the diagnostic
codes and demographic information
available in administrative data with a few
key clinical variables.2 3 Particularly
notable successes consist entirely of clin-
ical variables collected for the sole
purpose of predicting risk, such as the
various prognostic scoring systems for
critically ill patients, such as the Acute
Physiology and Chronic Health
Evaluation and the Simplified Acute
Physiology Score4–6 and the National
Surgical Quality Improvement Program.7

(Occasionally, research shows that an
outcome measure does not require adjust-
ment for case-mix.8)
But, what if comparing mortality rates

(or other key patient outcomes) were
problematic even with perfect case-mix
adjustment? For example, suppose a
75-year-old man undergoing cardiac
surgery has diabetes, mild kidney failure
and a previous stroke and a 65-year–old

woman has hypertension but no previous
strokes or kidney problems. Suppose the
case-mix adjustment model assigns a risk
of death or major complications after
surgery of 8% to the 75-year-old man
and only 4% to the 65-year-old woman.
And, let’s say that over time, we see that
patients who share the characteristics of
the 75-year-old man experience bad out-
comes 8% of the time, whereas patients
who resemble the 65-year–old woman
experience the lower complication rate of
4%. And, let’s even add that the model
works this well (ie, perfectly) for every
type of patient. Having a model like this
would seem to put to rest all the debates
over the fairness of outcome-based per-
formance measures. Disturbingly, it does
not, as first pointed out by Simpson and
Yule over 50 years ago.9 10

SIMPSON’S PARADOX
Simpson’s paradox (also known as the
Yule–Simpson effect)9 10 refers to an
association or effect found within mul-
tiple subgroups but which is reversed
when data from these groups are aggre-
gated. One non-technical exposition used
batting averages of two prominent profes-
sional baseball players as an example
(table 1).11 The batting average represents
the number of hits divided by the
number of ‘at-bats’ (the number of
opportunities the player had to hit the
ball). In both 1995 and 1996, David
Justice had a higher (better) batting
average than Derek Jeter. However,
aggregating reverses their ranking, with
Jeter having the higher batting average in
the 2 years combined. This reversal
results from the large difference in the
number of at-bats between the years, so
that the combined average of Jeter was
determined most by the 1996 average
(which was better than 1995), whereas
the opposite was true for Justice. Ross
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describes how such a pair of players can be found
about once a year.11

SIMPSON’S PARADOX AND RISK-ADJUSTED
PERFORMANCE MEASURES IN HEALTHCARE
In this issue, Manktelow et al12 explain how the same
phenomenon may occur when comparing standar-
dised mortality ratios (SMRs). Even though two provi-
ders have the same mortality risk within subgroups of
high-risk and low-risk patients, their overall SMRs
differ due to the difference in case-mix of patients
that they treat. The authors provide a hypothetical
example involving two surgeons (table 2) to illustrate
the point before delving into their data-driven analysis
of risk-adjusted outcomes across 33 paediatric inten-
sive care units in the UK.
As shown in table 2, both surgeons in this example

have the same observed and expected mortality rates
within subgroups of low-risk and high-risk patients
and the same 1.5-fold excess mortality for high-risk
patients. However, the overall SMR of Surgeon A is
lower (ie, better) than that of Surgeon B. In the base-
ball example, the change in ranking for the batting
averages for the two players occurred because of

differences in ‘at-bats’ in the 2 years. With the two
hypothetical surgeons in table 2, the change in
ranking of their SMRs occurs as a result of differences
in case-load across two subgroups of patients, low risk
and high risk. The higher overall SMR of Surgeon B
reflects the greater proportion of high-risk patients,
similar to the difference in at-bats causing the reversal
in the baseball example.
Empirical demonstrations of Simpson’s paradox are

uncommon—one of the reasons the contribution by
Manktelow and colleagues is valuable. But, one simu-
lation study of 2×2 tables showed that, given two sub-
groups of interest and two exposures of interest (eg,
Surgeon A vs Surgeon B compared for high-risk and
low-risk patients), the apparent effect in the overall
group will be the reverse of the effect seen in the sub-
groups roughly 2% of the time.12a In other words,
Surgeon A could achieve a better response than
Surgeon B in sicker patients and in low-risk patients,
but looking at the aggregate result, Surgeon B would
look better than Surgeon A (ie, just as with the base-
ball example—David Justice had the higher batting
average in each of the 2 years, but Derek Jeter has the
higher batting average across the 2 years combined).
Saying that Simpson’s paradox occurs about 2% of
the time makes it sound uncommon. But, this fre-
quency refers to the dramatic cases in which the sub-
groups show the opposite effect as the result seen in
the aggregate. Important discrepancies short of com-
plete reversal can still distort the interpretation of
clinical research13 and performance measures, such as
the widely used hospital standardised mortality ratio
(HSMR).14 15

SIMPSON’S PARADOX AND SMRs
The HSMR has become as a key measure of hospital
quality in various countries.16 17 Since its introduc-
tion, the HSMR has been heavily criticised on various
grounds, including the adequacy of case-mix adjust-
ment using purely administrative data and variations
in coding practices.18–20 Often overlooked in this
debate is the fact that the HSMR is computed via the
indirect standardisation method, so that HSMRs
cannot be compared directly across hospitals.21–23

The paper by Manktelow et al12 and a recent paper
from Pouw and colleagues24 provide empirical exam-
ples of how differences in case-mix can affect the

Table 1 Illustration of Simpson’s paradox using batting averages for two prominent baseball players

1995 1996 Combined

N hits N at-bats Batting average N hits N at-bats Batting average N hits N at-bats Batting average

Derek Jeter 12 48 0.250 183 582 0.314 195 630 0.310
David Justice 104 411 0.253 45 140 0.321 149 551 0.270

Example taken from Reference 11; statistics confirmed through http://www.baseball-reference.com/ (last accessed 25 Jun 2014). The example shows that
David Justice had a higher batting average (the ratio of hits over ‘at-bats’) than Derek Jeter in both 1995 and 1996. Yet, when the 2 years are combined,
Derek Jeter has the higher batting average. This paradoxical reversal of their batting averages results from the large difference in ‘at-bats’ in the 2 years.

Table 2 Illustration of Simpson’s paradox using the standardised
mortality ratio (SMR) for two surgeons with the same observed
risk-specific 30-day mortality

Surgeon A Surgeon B

Low-risk patients N=100 N=50

Deaths (n) 10 (10%) 5 (10%)

Number expected 10 (10%) 5 (10%)

High-risk patients N=50 N=100

Deaths (n) 15 (30%) 30 (30%)

Number expected 10 (20%) 20 (20%)

All patients N=150 N=150

Deaths (n) 25 35

Number expected 20 25

SMR 1.25 1.40

Example taken from Reference 12, the companion research article for this
editorial. The two surgeons have identical observed and expected mortality
rates for low-risk and high-risk patients. Their performance for low-risk
patients is as expected—the number of observed deaths equals the
expected number. Their performance for high-risk patients is worse than
expected, but to the same extent. Both surgeons have the same 1.5-fold
elevation in deaths for high-risk patients. Yet, the overall SMR of Surgeon
A is substantially lower (ie, better) than that of Surgeon B.
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HSMR. These examples highlight the need for
caution when hospitals differ in the proportions of
high-risk patients that they treat. When such differ-
ences exist and the observed mortality risk differs
from the expected mortality risk calculated by the
HSMR model, Simpson’s paradox may rear its head.
Several variables determine the impact on the

HSMR in a situation where both hospitals have equal
mortality rates within subgroups of patients. First, the
magnitude of the difference between observed and
expected mortality matters. If mortality risks are low,
say 3% observed versus 1% expected, this excess risk
of death will have less impact than would a difference
between 30% observed and 10% expected mortality
(see the brown dots in figure 1).
Such a dramatic difference may seem unlikely in

practice. However, patients directly admitted to inten-
sive care units may exhibit this degree of discrepancy
between observed and expected mortality because the
severity of their clinical condition is not adequately
captured by the variables included in the HSMR
model.20 25 The HSMR captures comorbid conditions
and admitting diagnosis, but cannot capture the sever-
ity of the acute illness. For example, two 65-year-old
patients with the same chronic illnesses (eg, diabetes,
hypertension and mild chronic kidney disease) are
admitted to the hospital with pneumonia. They will
have the same predicted risk of death, even if one of

them has multilobar pneumonia and imminent respira-
tory failure, requiring admission to the intensive care
unit. (Clinical models such as the pneumonia severity
index26 and the several widely used scoring systems for
predicting outcomes of critical care patients4–6 include
variables that do capture disease severity.) Using
HSMR data from the Leiden University Medical
Centre in 2012, we found that 4.5% of patients were
directly admitted to intensive care with an observed
mortality risk of 31.4%. Expected mortality based on
the Dutch HSMR model was 18.3%. All other patients
had an observed mortality of 3.2% compared with
3.4% expected. A difference of 20% observed versus
10% expected (the green dots in the graph) will have
less impact. So, the higher the difference between
observed and expected mortality, the higher the impact
on the HSMR.
A second important factor determining the impact

on the HSMR with respect to Simpson’s paradox con-
cerns the relative proportions of high-risk patients
treated by the hospitals. One might think that small
differences in case-mix will exert little impact on the
HSMR—for example, if 5% of patients at Hospital A
are high-risk while only 1% of Hospital B’s patients
are high-risk. However, such a small difference in
case-mix combined with a considerable excess mortal-
ity for these high-risk patients may still have signifi-
cant impact on the HSMR.

Figure 1 The impact of Simpson’s paradox on standardised mortality ratio (SMR) for varying differences in case-mix. The graph
shows the ratio of the SMR for two hospitals that exhibit the same performance on low-risk and high-risk patients, but the overall
SMR is higher for Hospital A due to its higher proportion of high-risk patients. The vertical axis captures this difference by showing
the ratio of SMR for Hospital A and Hospital B. The ratio should be 1, but it becomes increasingly higher than 1 with increasing
differences between hospitals in the proportion of high-risk patients (shown on the horizontal axis) and with increasing difference
between observed and expected mortality (shown in different colours).
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As shown in figure 1, a 5% difference in high-risk
patients treated (10% vs 5%) combined with a differ-
ence of 30% observed mortality versus 10% expected
mortality (the brown dots) results in a 19% higher
HSMR (154 vs 130). The same 5% difference and
mortality rates have even higher impact if one of the
hospitals treats a very small percentage of high-risk
patients (eg, 6% vs 1%, resulting in a 27% higher
HSMR). This is shown by the ‘bands’ of dots in the
same colour in the graph. In these circumstances, the
HSMR fails to reflect the fact that mortality risks
within subgroups of high-risk and low-risk patients
are exactly the same in both hospitals—the HSMR
suggests a difference in mortality when, in fact, both
hospitals have the same performance. The opposite
may also occur. Equivalent HSMRs may mask a
higher mortality risk for a group of high-risk patients.
So, the impact on the HSMR is determined by the
combination of these factors—the magnitude of the
difference between observed and expected mortality
as well as the difference in the proportions of high-
risk patients treated at the hospitals.

WHAT TO DO ABOUT THIS PROBLEM:
HOW CAN WE DEAL WITH SIMPSON’S
PARADOX IN PRACTICE?
Misclassification due to Simpson’s paradox relies on
disproportionate variations in inputs that produce a
performance ranking: (1) the number of observations
in a subgroup—whether the number of at-bats in a
year or the number of patients in the highest category
of risk and (2) the performance within the subgroup
(eg, batting average in a year or excess mortality
within a high-risk group). When a large imbalance
between these inputs exists (due to variations in prac-
tice volume, numbers of high-risk patients or coding
practices), performance for the aggregate (eg, all
patients treated in the hospital) can substantially mis-
represent actual performance in subgroups of interest
(high-risk and low-risk patients).
Direct comparison of HSMRs between hospitals

thus poses problems without additional information
on the types of patients treated in different hospitals
and does not tell us whether the performance of a
hospital for key patient groups (eg, defined by their
risk profile from the model or by clinical features not
adequately captured in the model, such as direct
admission to intensive care) is better than in another
hospital. The overall HSMR may be affected by
Simpson’s paradox, particularly if there are subgroups
of patients characterised by high mortality risks and a
large difference between observed and expected mor-
tality. This is well known among public health
researchers and epidemiologists, who have often
pointed out the problems of using the HSMR to
produce league tables.13 21 27

Despite frequent critiques of hospital mortality
ratios in the literature,18–20 22 28 interest in these

measures remains high. They are publicly reported in
several countries, and various regulatory and commer-
cial organisations will undoubtedly continue to create
listings and ranking that use HSMRs in some fashion.
Given that HSMRs are here to stay, we need to take
appropriate cautions in interpreting them. Publication
of HSMRs should be accompanied by descriptions of
the types of patients treated at the hospital (eg, the
proportions of patients in different risk categories).
Publication of HSMRs should probably also be
accompanied by a clear message that direct compari-
sons of HSMRs can be misleading.
The HSMR alone is not sufficient to inform

patients or policy makers whether the mortality risk is
higher in one hospital or another for a particular
group of (high-risk) patients, and thereby support
their hospital choice or evaluation of quality of care.
Just as we publish warnings for medications, we need
to attach cautionary notes to HSMRs.
Misinterpretation and misuse of these data will not
cause direct harm to patients, but they can cause harm
through diverting resources to addressing problems
that do not exist and inducing complacency among
hospitals that do have problems.
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